通过实验装置的分解和结论讨论,我们对常压DBD介质阻挡等离子给金属丝退火的原理和影响因素有了一定了解,我们知道了等离子退火的温度和效能与介质的材料、厚度、尺寸、长度等因素有重要关系,而受频率的影响并不大。本篇主要会通过实际模型来进一步探讨相关知识。

金属丝退火.png

在这一部分中,等效电路模型用于分析细铜线退火温度对常压DBD等离子体的依赖。通过分析模型,可以确定退火温度的主要因素是在导线表面的离子轰击。在计算常压DBD介质阻挡等离子体反应器内细铜丝的平均温度的函数包括介质直径、介电材料,施加的电压,离子的质量和气体导热系数。介质对金属丝退火的影响是用来分析模型与实验比较。

在常压DBD介质阻挡等离子体反应器中,电子和离子的运动会形成放电电流特性。从实验的电流波形显示,在每半周期的波形具有多峰,每一个峰值放电时具有正弦形状。这种特性不同于微放电模型(包含许多非常小的,短暂的(纳秒级),电流细导线)。我们观察到介质厚度对退火效果是有着影响的。

金属丝退火.png

在我们的实验中我们观察到了退火温度对电介质材料,玻璃和氧化铝的依赖性。仿真结果表明,在达到退火温度时,氧化铝介质比玻璃介质的是更有效的。这一结果也与实验结果相同。我们可以得出这样的结论:介电层材料影响退火和清洗结果。具有更高介电常数的介电材料可更有效地达到退火温度。

通过一些其他的结果我们预测,常压DBD等离子放电对细铜丝等金属丝退火和清洗市场应用潜力值得挖掘。常压DBD介质阻挡等离子退火细铜丝的新模式也为RLC等效电路;介电材料和介电层厚度是影响退火和清洗细金属丝的两个参数。

等离子清洗机.png

在最佳的退火条件下,更薄的介电层厚度,更高的介电常数可更有效获得延伸率和清洁的表面。此外,介电质对外加电源的频率的依赖关系也被认为该频率对介质和退火效果有一定影响。